Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2379226.v1

ABSTRACT

Background Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Methods Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 higher plasma abundances of protein targets and 40 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). Results We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-Cindicating tubular dysfunction and injury. Conclusions Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Subject(s)
Kidney Diseases , Renal Tubular Transport, Inborn Errors , Acute Kidney Injury , COVID-19 , Fanconi Syndrome , Cardiomyopathies
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275997

ABSTRACT

Obesity is a major risk factor for COVID-19 severity; however, the underlying mechanism is not fully understood. Considering that obesity influences the human plasma proteome, we sought to identify circulating proteins mediating the effects of obesity on COVID-19 severity. We first screened 4,907 plasma proteins to identify proteins influenced by body mass index (BMI) using Mendelian randomization (MR). This yielded 1,216 proteins, whose effects on COVID-19 severity were assessed, again using MR. This two-step approach identified nephronectin (NPNT), for which a one standard deviation increase was associated with severe COVID-19 (odds ratio = 1.71, 95% CI: 1.45-2.02, P = 1.63 x 10-10). Colocalization analyses indicated that an NPNT splice isoform drove this effect. Overall, NPNT mediates 3.7% of the total effect of BMI on severe COVID-19. Finally, we found that decreasing body fat mass and increasing fat-free mass can lower NPNT levels and thus may improve COVID-19 outcomes. These findings provide actionable insights into how obesity influences COVID-19 severity.


Subject(s)
COVID-19 , Obesity
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.09.21267548

ABSTRACT

Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using longitudinally collected biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. Using longitudinal measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N= 437), we identified 413 upregulated and 40 downregulated proteins associated with COVID-AKI (adjusted p <0.05). Of these, 62 proteins were validated in an external cohort (p <0.05, N =261). We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p <0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. Using longitudinal clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Subject(s)
Severe Acute Respiratory Syndrome , Kidney Diseases , Renal Tubular Transport, Inborn Errors , Acute Kidney Injury , COVID-19 , Fanconi Syndrome , Cardiomyopathies
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264015

ABSTRACT

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL